A Cavity-less Micromachined Capacitive Pressure Sensor for Wireless Operation in Liquid Ambient

نویسندگان

  • K. Takahata
  • Y. B. Gianchandani
چکیده

This paper reports a micromachined capacitive pressure sensor that does not use the traditional cavity and diaphragm, and its use in aqueous environment. The device is fabricated with two micromachined plates of stainless steel and an intermediate polymer layer that is soft enough to deform in the target pressure range. A polyurethane room-temperature-vulcanizing liquid rubber of 38-μm thickness is used as the deformable material. For frequency-based interrogation of the capacitance, a passive inductor-capacitor tank is fabricated by combining the capacitive sensor with an inductive coil, which is formed using an 80-μm-diameter copper wire. Wireless sensing in liquid is demonstrated by monitoring the variation in the resonant frequency of the tank via an external coil that is magnetically coupled with the tank. The sensitivity at room temperature is measured to be 23-33 ppm/KPa over a dynamic range of 340 KPa, which is shown to match a theoretical estimate obtained by a bonded elastomer model. The geometrical impact on the frequency response is also evaluated.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Micromachined Capacitive Pressure Sensor Using a Cavity-Less Structure with Bulk-Metal/Elastomer Layers and Its Wireless Telemetry Application

This paper reports a micromachined capacitive pressure sensor intended for applications that require mechanical robustness. The device is constructed with two micromachined metal plates and an intermediate polymer layer that is soft enough to deform in a target pressure range. The plates are formed of micromachined stainless steel fabricated by batch-compatible micro-electro-discharge machining...

متن کامل

Design and Construction of a New Capacitive Tactile Sensor for Measuring Normal Tactile Force

This paper presents the design, construction and testing of a new capacitive tactile sensor for measurement of normal tactile force. The operation of proposed sensor has been investigated in ASTABLE and MONOSTABLE circuits. According to the results of these circuits the deviation of ASTABLE circuit results is less than MONOSTABLE circuit results. In addition, the results obtained from ASTABLE c...

متن کامل

A Servo-Controlled Capacitive Pressure Sensor Using a Capped-Cylinder Structure Microfabricated by a Three-Mask Process

A silicon-micromachined servo-controlled capacitive pressure sensor is described. The use of a capped-cylinder shape with pick-off electrodes external to a sealed cavity permits this device to be fabricated in only three masking steps. Device behavior is evaluated experimentally and by finite element analysis. A fabricated device with 2 mm diameter, 9.7 m structural thickness and 10 m cavity he...

متن کامل

Design of High Sensitivity and Linearity Microelectromechanical Systems Capacitive Tire Pressure Sensor using Stepped Membrane

This paper is focused on a novel design of stepped diaphragm for MEMS capacitive pressure sensor used in tire pressure monitoring system. The structure of sensor diaphragm plays a key role for determining the sensitivity of the sensor and the non-linearity of the output.First the structures of two capacitive pressure sensors with clamped square flatdiaphragms, with different thicknesses are inv...

متن کامل

Stentenna: a Micromachined Antenna Stent for Wireless Monitoring of Implantable Microsensors

* Contact information: 2405 EECS, 1301 Beal Avenue, Ann Arbor, MI 48108-2122, USA; Tel: 734-615-6407; Fax: 763-9324; Email: [email protected] Abstract This paper reports on a micromachined stent that has been developed to serve as an antenna for wireless monitoring of implantable microsensors. A 4 mm long, 3.5 mm diameter design is fabricated from 50 μm thick stainless steel foil using a batch-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008